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Abstract

Dissipative particle dynamics (DPD) is a relatively new mesoscopic simulation approach, which has been successfully
applied in modeling complex fluids in periodic domains. A recent modification [X.J. Fan, N. Phan-Thien, S. Chen, X.H.
Wu, T.Y. Ng, Simulating flow of DNA suspension using dissipative particle dynamics, Physics of Fluids 18 (6) (2006)
063102] has allowed DPD simulations of polymers for realistic values of the Schmidt number. However, DPD and its
extensions encounter difficulties in simulating even simple fluids in wall-bounded domains. The two main problems are wall
boundary conditions and compressibility effects – the topic of the present work – which limit the application of DPD to
low Reynolds number (Re) flows (e.g., Re < 100). Here, we establish an empirical criterion that provides an upper limit in
velocity and correspondingly in Re for a fixed computational domain, assuming a deviation from Navier–Stokes solutions
of at most 5%. This limit could be increased by increasing the size of the computational domain at approximately linear
computational cost. Results are presented for the lid-driven cavity flow reaching, for first time, Re ¼ 1000, and similar
extensions can be established for other complex-geometry flows. A systematic investigation is presented with respect to
both different types of boundary conditions and compressibility effects for the standard DPD method as well as the mod-
ified version that simulates highly viscous fluids.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Dissipative particle dynamics (DPD) is a mesoscopic method [2,3] that can potentially bridge the gap
between atomistic and continuum descriptions in fluids. The DPD particles represent clusters of molecules
moving together in a Lagrangian fashion subject to soft quadratic potentials. In contrast to molecular dynam-
ics method, DPD employs much larger time steps and particle sizes because of the soft particle interactions. In
particular, the DPD method appears to be successful in simulations of complex fluids, such as suspensions of
polymers, DNA, and colloids in a Newtonian incompressible solvent, etc., see [4–6]. Unlike other methods,
such as Smoothed Particle Hydrodynamics (SPH) [7] and Lattice Boltzmann Method (LBM) [8], the DPD
model includes thermal fluctuations, which may play a crucial role even in mesoscopic flows. Such corrections
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have to be explicitly introduced in LBM [9] and SPH [10]. In addition to many simulations of complex fluids,
several attempts have been made to simulate simple fluids at finite Reynolds number (Re > 1 but typicall less
than 100) for several prototype flows, e.g. flows past cylinders, spheres, and inside channels and cavities [11–
15]. The connection of DPD to molecular dynamics as well as to Navier–Stokes equations was investigated in
[16]. It has been found that DPD exhibits hydrodynamic behavior and agrees well with numerical solutions of
the Navier–Stokes equations but the question remains when this agreement breaks down and, moreover, what
is the level of acceptable accuracy. Unlike continuum-based discretizations where the simulation codes typi-
cally blow up for under-resolving a flow field (essentially acting as a diagnostic measure), in the Lagrang-
ian-based DPD simulations there is no blow-up but the simulation may converge to an erroneous flow
state – a far more dangerous situation!

An example of a DPD simulation is shown in Fig. 1 for the triangular-cavity flow at Reynolds number
Re ¼ 100 along with spectral element simulations [17] employing eighth-order polynomials (here, the Reynolds
number is based on the lid velocity and the height of the cavity). The figure shows streamlines of the cavity
flow with the upper wall moving to the right. In the absence of inertia, the triangular-cavity flow exhibits a
cascade of counter-rotating vortices, with their strength decaying exponentially as we approach the bottom
corner of the domain (left plot). Hence, capturing these weak secondary vortices is challenging, and, indeed,
most standard grid-based methods fail to resolve more than two or three vortices. The effect of inertia appears
to modify the flow structure and only two vortices are visible in the spectral element simulations at Re ¼ 100
(middle plot). In this case, DPD also resolves two vortices although the secondary vortex appears to be under-
resolved. In fact, systematic comparisons between DPD and spectral element solutions showed good agree-
ment of the flow fields at low Re but the results were strongly depended on the boundary conditions employed
in DPD to enforce the no-slip condition. At higher values of Re, the DPD results yield relatively large discrep-
ancy compared to the spectral element solutions depending on the specific boundary conditions employed and
the velocity of the driven lid.

The problems encountered in the DPD simulation of the triangular-cavity flow are typical in most DPD
simulations of wall-bounded flows, namely: (1) the specific implementation of boundary conditions affects
the maximum Reynolds number that can be simulated for a specific domain; (2) density fluctuations and asso-
ciated clustering of particles arise, especially close to walls, which may also affect the bulk of the flow. Com-
pressibility effects are common in other methods (e.g., SPH or LBM) but also different boundary condition
models have been shown to greatly affect the flow patterns. These effects have also been identified in [12] as
limiting the accuracy of DPD for flows past arrays of spheres and cylinders.
SEM,Stokes SEM,Navier-Stokes DPD

Fig. 1. Streamline patterns from simulations of the triangular-cavity flow. The upper wall is moving to the right and the angle between the
two stationary walls is 30�. (left) Stokes flow simulated with spectral elements. (middle) Re ¼ 100 flow simulated with spectral elements.
(right) Re ¼ 100 flow simulated with DPD.
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In the current paper, we investigate systematically the aforementioned two issues and develop a simple cri-
terion to diagnose erroneous DPD results in wall-bounded flows. To this end, we consider the square-cavity
flow for which there is vast literature of solutions based on discretizations of Navier–Stokes equations. In
addition to the standard DPD method, we present results obtained with a modified version of DPD, which
was recently introduced in [1]. In this version, the relative dissipative and random force interactions are mod-
ified (see Section 2 for details) in order to increase the viscosity of the DPD fluid and hence the Schmidt num-
ber, which is defined as Sc ¼ m

D, where m is the kinematic viscosity of the fluid and D is the diffusivity. As
pointed out in [18], the standard DPD is able to reproduce fluids with values of Schmidt numbers of order
Oð1Þ, in contrast to Oð103Þ Schmidt numbers of real fluids. This increase in Schmidt number is desired in poly-
mer flows and other transport problems.

The paper is organized as follows. In the next section we review briefly the DPD governing equations and in
Section 3 we compare various no-slip boundary conditions. In Section 4 we present simulation results for the
cavity flow, and subsequently we propose a quantitative criterion (based on the number density) that deter-
mines the maximum Reynolds number that can be simulated accurately with DPD. We conclude in Section
5 with a brief discussion.
2. DPD governing equations

The DPD system consists of N point particles of mass mi, position ri and velocity vi. These particles rep-
resent ‘‘molecular clusters” rather than individual atoms and interact through simple pairwise-additive forces.
The total force exerted on a particle i by particle j consists of three terms: (1) conservative; (2) dissipative; (3)
random forces, i.e.,
FC
ij ¼ F C

ijðrijÞr̂ij; ð1Þ
FD

ij ¼ �cxDðrijÞðvij � r̂ijÞr̂ij; ð2Þ
FR

ij ¼ rxRðrijÞnijr̂ij; ð3Þ
where rij ¼ ri � rj, rij ¼ jrijj, r̂ij ¼ rij=rij, and vij ¼ vi � vj. The coefficients c and r determine the amplitude of
dissipative and random forces, respectively. xD and xR are weight functions, nij is a normally distributed
random variable with zero mean, unit variance, and nij ¼ nji. All forces act within a sphere of radius rc, the
cutoff radius, which defines the length scale in the DPD system. The conservative force F C

ijðrijÞ is typically
given by
F C
ijðrijÞ ¼

aijð1� rij=rcÞ for rij 6 rc;

0 for rij > rc;

�
ð4Þ
where aij ¼
ffiffiffiffiffiffiffiffi
aiaj
p

and ai, aj are conservative force coefficients for particles i and j, respectively.
The DPD system relaxes to an equilibrium temperature T when the random and dissipative forces satisfy

the fluctuation dissipation theorem [19]
xDðrijÞ ¼ xRðrijÞ
� �2

; ð5Þ
r2 ¼ 2ckBT ; ð6Þ
where kB is the Boltzmann constant. The typical choice for the weight functions is
xRðrijÞ ¼
ð1� rij=rcÞp for rij 6 rc;

0 for rij > rc:

�
ð7Þ
where p ¼ 1 for the standard DPD method. However, other choices for these envelopes have been proposed in
order to increase the Schmidt number of the DPD fluid, e.g., p ¼ 0:25 in [1]. We will refer to this version of
DPD as ‘‘modified DPD” in the current paper.
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The time evolution of velocities and positions of particles is described by Newton’s second law of motion
dri ¼ vi dt; ð8Þ

dvi ¼
1

mi

X
j 6¼i

ðFC
ij dt þ FD

ij dt þ FR
ij

ffiffiffiffiffi
dt
p
Þ: ð9Þ
There are several methods that can be used for the integration of DPD evolution equations. In this work we
use two different time-integration algorithms in order to compare their performance in simulations of wall-
bounded systems. The selected methods are (1) modified velocity-Verlet algorithm [3], and (2) self-consistent
DPD integration scheme [20]. We want to investigate if any of these time-integration algorithms yields results
with a different upper limit in Re.
3. Boundary conditions

One of the main issues in DPD simulation of wall-bounded flows is the correct imposition of boundary con-
ditions. There are two main approaches for modeling solid boundaries: indirect methods, which avoid direct
modeling of the physical boundaries by relying on modifications of the periodic boundary conditions or of the
domain [21,22]; and direct methods, which model solid boundaries by locally freezing regions of particles
[23,24]. The first category is limited to simple flows, so here we focus on wall boundary conditions in
DPD, which employ collections of frozen particles in combination with particle reflection rules. In particular,
reflection of fluid particles at the fluid-solid interface prevents fluid particles from penetrating the wall; this can
be implemented by using specular, bounce-back, bounce-forward, or Maxwellian reflection.

Here we employ several different (no-slip) wall boundary conditions. Revenga et al. [24] performed simu-
lations of DPD flows without any conservative interactions (aij ¼ 0) and showed that large values of the den-
sity of wall particles enforces the no-slip condition at the fluid-solid interface. In [25] the no-slip boundary
condition was achieved by employing a bounce-back reflection even for relatively small wall densities. How-
ever, in the presence of repulsive interactions (aij 6¼ 0) non-negligible density fluctuations are observed in the
near-wall region. More recently, it has been shown [15] that these fluctuations induce an apparent slip – due to
the shearing between high and low density layers – and it becomes more pronounced at higher shear rates.
Hence, one has to simultaneously impose the no-slip condition directly at the solid boundary and, in addition,
to control the near-wall density fluctuations.

Specifically, a force boundary condition (FBC) was developed in [15] by freezing several wall layers of uni-
formly distributed (simple cubic lattice) DPD particles in combination with bounce-back reflection at the
interface. In addition, the repulsive interactions from the wall particles are adjusted according to the fluid
and wall number densities, as follows:
aw ¼
1

af

0:39ðnfkBT þ 0:1afn2
f Þ

0:0303n2
w þ 0:5617nw � 0:8536

� �2

; ð10Þ
where aw and af are the conservative force coefficients of wall and fluid particles, and nw, nf are wall and fluid
number densities, respectively. Such tuning of the conservative force does not completely solve the problem of
near-wall density fluctuations, however, it eliminates slip for low and moderate shear rates in the standard
DPD method (corresponding to p ¼ 1 in Eq. (7)).

Results from our various DPD simulations reveal that the problem of density fluctuations close to the wall
remains in the case of freezing layers of particles. This artifact is due to an imbalance of the DPD forces
between wall particles and surrounding fluid particles along the wall-normal direction. (The dissipative and
random forces have no net contributions along the wall-normal direction unlike the conservative force as will
be shown at the end of this section.) Therefore, the idea of introducing an adaptive wall potential seems to be
reasonable, so following [26] we use here two types of adaptive boundary conditions, which we will call ABC-0
and ABC-I. In ABC-0, we freeze several wall layers of DPD particles similar to FBC, but the conservative
force of wall particles is set to zero. In order to compensate the repulsive force imbalance from the wall we
introduce adaptively a wall force acting on the fluid particles. The adaptive force calculation, which is
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described in detail in [26], controls the density fluctuations and can enforce any desirable density profile close
to the wall. In ABC-I, density fluctuations are controlled similar to ABC-0. However, instead of layers of fro-
zen DPD particles, we introduce image particles in the wall region as it was done in [13,26]. For completeness,
we describe below the procedure for computing the random and dissipative force contributions for ABC-I.

Let us consider a wall perpendicular to y-axis and located at y ¼ yW; the wall is moving with velocity vW

remaining on the y ¼ yW plane. We assume that there are N W fluid particles within the cutoff distance rc from
the wall. The ith particle has coordinates ðxi; yi; ziÞ and velocity vi while the total force acting on particle i is Fi.
It is convenient to introduce a ghost particle g, although it is not necessary to construct it explicitly in the code.
The dissipative and random force contributions of the wall boundary conditions at each time step are
expressed using the following pseudo-code:

for particle i ¼ 1; ::;NW

create ghost particle g with xg ¼ xi þ nx, yg ¼ 2yW � yi, zg ¼ zi þ nz and vg ¼ 2vW � vi.
for particle j ¼ iþ 1; ::;N W

compute FR
jg, FD

jg

Fj ¼ Fj þ FD
jg þ dt�1=2FR

jg

Fi ¼ Fi � FD
jg � dt�1=2FR

jg

end
end

The random variables nx and nz are uniformly distributed in the interval ½�rc; rc�. In addition, when fluid
particles penetrate into the wall region, we perform a bounce-back reflection of these particles into the fluid
region.

In the current work, we target uniform density profiles, i.e., the near wall density is equal to the bulk den-
sity. We have found that for a uniform density profile close to the wall the iterative adaptive procedure for the
conservative force in ABC converges to the wall force that corresponds to a potential profile, which compen-
sates for the imbalance of repulsive forces from the surrounding semi-spherical fluid region. We have verified
that the same potential can be obtained by numerical integration of the conservative force multiplied by the
radial distribution function over the semi-spherical fluid region – an approach first presented in [27] – i.e.,
F wðhÞ ¼ n
Z

V snV capðhÞ
F C

wðrÞgðrÞdV ; ð11Þ
where h is the distance from the fluid particle to the wall, n is the number density, V s is the sphere volume,
V capðhÞ is a spherical cap (cut out) from the wall, F C

wðrÞ is the conservative DPD force in the direction normal
to the wall, and gðrÞ is the radial distribution function. The expression for F wðhÞ cannot be obtained analyt-
ically because the radial distribution function does not, in general, have an analytical expression. Hence, for a
uniform density profile the wall adaptive force can be imposed during the simulation by either using an iter-
ative procedure or by numerical integration after computing the radial distribution function for a specific
DPD fluid.

An alternative way to impose the no-slip boundary condition (based on frozen wall particles) is to consider
in a pre-processing stage a flow simulation at the equilibrium state (no net fluid motion) in combination with
an adaptive wall shear procedure. At the pre-processing stage, the domain – which covers both fluid and solid
wall regions – is assumed to be periodic in all directions and without any solid walls present. The DPD par-
ticles are distributed in a lattice or randomly in the domain and simulations are run until the equilibrium state
is reached. The particles, which occupy the region of solid walls, are then frozen at some instant of time and
later used to model solid walls in combination with bounce-back reflection at the fluid-solid interface. We have
developed a procedure with two types of boundary conditions, which we denote as EBC-0 when the adaptive
wall shear procedure is not used and EBC-S when the adaptive procedure is employed.

The details of EBC-S type can be explained using the sketch of Fig. 2. In simulations, we consider subre-
gions of the computational domain of width L ¼ rc adjacent to the fluid-solid interface in both fluid and wall
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Fig. 2. Sketch illustrating the concept of equilibrium boundary condition with shear (EBC-S).
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regions. We divide the fluid and wall subregions into bins of height h, whose value can be chosen based on the
desired accuracy of the near-wall velocity profile. These subregions can be divided into bins along the wall if
the velocity profile changes in the direction parallel to the wall. During the simulation, in each bin in the fluid
subregion the time-averaged velocity vav is collected over a specified number of time-steps. The velocities of the
particles inside each bin in the wall subregion are set to be opposite, i.e. �vav, to the average velocity in the
corresponding fluid subregion bin, which is symmetric with respect to the fluid-solid interface. The wall par-
ticles (shown as open circles) do not move in the simulations and carry only velocity information, which is
used in the calculation of the dissipative force. We find that this model enforces the no-slip boundary condi-
tions and eliminates density fluctuations in the near-wall region, similarly to ABC-I. Moreover, the EBC-S
model has about the same computational cost as the two previous models (FBC and ABC) and it can be easily
implemented.

In summary, all three types of boundary conditions (i.e., FBC, ABC and EBC, see Table 1) are effective for
flows involving low to moderate wall shear rates. However, in the high shear rate regime only ABC-I and
EBC-S enforce properly the no-slip condition at the walls with minimum near-wall density fluctuations.

3.1. Modified DPD: more viscous fluids

In the discussion so far we have considered the standard DPD method, which simulates fluids with Schmidt
number of order one [3]. In a recent paper [1], an attempt was made to achieve much larger values of the
Schmidt number and one of the modifications proposed was a change of the weight function of dissipative
and random forces. In particular, a slower decay with distance of the interaction envelope enhances the dis-
sipative interactions of particles with surrounding particles and substantially increases the viscosity of the fluid
and hence the corresponding Schmidt number. In addition, in order to increase the value of viscosity we can
Table 1
Summary of no-slip wall boundary conditions

FBC Force boundary condition, Eq. (10)
ABC-0 Adaptive boundary condition with frozen particles
ABC-I Adaptive boundary condition with image particles
EBC-0 Equilibrium boundary condition without shear correction
EBC-S Equilibrium boundary condition with shear correction



2546 D.A. Fedosov et al. / Journal of Computational Physics 227 (2008) 2540–2559
increase the cutoff radius in the DPD simulation. Here, we are interested to examine how accurate are the three
aforementioned types of boundary conditions for the modified DPD method.

To this end, we performed several DPD simulations of Poiseuille flow in a channel. In the case of the stan-

dard DPD method all types of boundary conditions give correct results for modest levels of wall shear stress.
In the modified DPD simulations we employed the following parameters: number density n ¼ 4; force coeffi-
cients a ¼ 18:75; c ¼ 4:5; r ¼ 3:0; temperature kBT ¼ 1:0; cutoff radius rc ¼ 1:0; domain size 20� 20� 10;
pressure drop g ¼ 0:05; and exponent in the random force weight function p ¼ 0:25 (Eq. (7)). For comparison,
the viscosity in the modified DPD simulations is approximately twice the viscosity of the standard DPD case
while the Schmidt number is about six times larger. Fig. 3 summarizes the results from modified DPD simu-
lations. The solution corresponding to ABC-I and EBC-S coincides with the analytical solution. However, in
the absence of the adaptive shear procedure, i.e., case EBC-0, we obtain a solution with a small slip at the wall.
Also, for simulations employing FBC and ABC-0 we observe an under-development of the Poiseuille profile.

To understand these results we consider each DPD force contribution from the wall separately for the three
directional components: normal, streamwise tangential and across-stream tangential. First, we compute them
for an ideal implementation of the wall using the periodic Poiseuille flow method (PPFM) [22]. In this method
the domain is subdivided into two subdomains and two counter-flowing Poiseuille flows are established by
applying a force with the same magnitude but opposite direction in each subdomain. The planes separating
the subdomains can be considered as imaginary ideal walls, i.e., walls that are modeled without explicit imple-
mentation of the no-slip conditions. At each time step we measure the instantaneous force acting on the par-
ticles within distance r from these ideal walls on one side from the particles on the opposite side. We find that
only two components of force contributions out of nine have a non-zero average value, i.e., the normal com-
ponent of the conservative force and the streamwise (tangential) component of the dissipative force. They are
shown as a function of distance from the wall with solid lines in Fig. 4. The normal component of the conser-
vative force acting on the fluid particles from the wall controls the fluid density fluctuations close to the wall.
The streamwise dissipative force component determines the streamwise velocity profile close to the wall. In the
same figure, we plot the average values of the forces acting on fluid particles from the wall for different imple-
mentations of the wall boundary conditions considered above. We observe that the average values of the nor-
mal component of the conservative force are close to the ideal profile for all methods except for FBC.
Specifically, FBC leads to results with large density fluctuations compared to other methods (see Fig. 3).
The average streamwise dissipative force components of the ABC-I and EBC-S capture the ideal profile quite
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well. For other methods we observe deviations, which are consistent with the simulation results for the velocity
profiles shown in Fig. 3.

4. Simulation results

In this section we present results from DPD simulations of the square lid-driven cavity flow at different
Reynolds numbers; the Reynolds number is defined as Re ¼ UL

m , where U is the velocity of the moving lid,
L is the height of the cavity, and m is a kinematic viscosity of the fluid. The DPD simulation results will be
compared to numerical solutions obtained by the highly accurate spectral element discretization of the
Navier–Stokes equations [17]. All DPD simulations were performed using the modified version of the veloc-
ity-Verlet algorithm [3] for the integration of equations of motion. For comparison purposes, we also
employed the self-consistent DPD algorithm [20]; the difference in the results was negligible, i.e., of the order
of the statistical fluctuations.

4.1. Simulation parameters

The following parameters are used in DPD simulations. The fluid number density is n ¼ 3 and the cutoff
radius rc ¼ 1. The conservative force coefficient of fluid particles is a ¼ 25:0 while the random and dissipative
force coefficients are r ¼ 3:0 and c ¼ 4:5. The temperature is set to kBT ¼ 1 satisfying the fluctuation–dissipa-
tion relations (5) and (6). The kinematic viscosity m of the DPD fluid is equal to 0.2854; it was obtained by
fitting a parabola to the DPD results from periodic Poiseuille flow method (PPFM) described in [22]. The
majority of simulations employed the modified velocity-Verlet integration scheme with k ¼ 0:5 [3], which cor-
responds to the standard velocity-Verlet scheme widely used in Molecular Dynamics simulations. The time
step is between 0.001 and 0.01 depending on the Reynolds number of a particular case. With regards to bound-
ary conditions, for FBC and ABC-0 the solid walls are modeled by freezing several layers of uniformly dis-
tributed DPD particles. The number density of the walls is nw ¼ 8:6 while the conservative force coefficient
of wall particles is aw ¼ 0:1017 according to Eq. (10) [15]. For EBC-0 and EBC-S the solid walls are modeled
by freezing DPD particles at equilibrium while the density of the walls is the same as that of fluid. For ABC-0
and ABC-I we use a 5� 1� 1 bin grid for all walls in order to compute the density fluctuations. In particular,
the bins have the length of the cavity wall and height rc

5
¼ 0:2. We are targeting uniform density profile with



Fig. 5. Streamline pattern obtained using spectral element discretizations at (left) Re ¼ 10 and (right) Re ¼ 1000. The upper wall is moving
to the right. Comparison of results is performed along the cuts VV0 and DD0. The coordinates are normalized by the domain size.
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density magnitude n ¼ 3. In each corner we have two overlapping grids, which result in non-uniform density
profile in the corner as we will observe later. For EBC-S we use a 5� 5� 1 bin grid for all walls in order to
compute the near-wall velocity profile and mimic a counter flow in the wall region. In addition, we employed a
bounce-back reflection at the fluid-solid interface. For comparison, we have run several cases with specular
and Maxwellian reflection; the results showed no dependence on the particular reflection type.

The flow domain size is 10� 10� 1000 (in DPD units), and it is periodic in the z direction. Another set of
DPD simulations was performed on a larger domain, corresponding to 20� 20� 500 (in DPD units). The
large domain size in the z direction allowed us to obtain converged statistics relatively quickly after the steady
state was reached. The domain is subdivided into 40 bins in x and y directions. The simulations are run for
500; 000 time steps and statistical data are collected starting from time step 50,000. The highest Reynolds num-
ber in the current study, Re ¼ 1000, was obtained on a domain 100� 100� 10.

4.2. Reference numerical solution

In Fig. 5 we show streamlines for the square-cavity flow at Reynolds number Re ¼ 10 and Re ¼ 1000. The
solution was obtained using the solver NEKTAR [17] based on spectral element discretization of the incom-
pressible Navier–Stokes equations using 900 quadrilateral elements with fourth- and sixth-order polynomials,
for the low and high Reynolds numbers, respectively. The velocity of the upper wall is fixed while no-slip con-
ditions are applied at all the other walls.

4.3. Low reynolds number flow

We start our DPD tests from the case of static fluid corresponding to Re ¼ 0 according to our definition.1

We can use these equilibrium simulations in order to identify differences among the various solid-wall bound-
ary condition models. In Fig. 6 we plot the number density profiles extracted along the vertical (VV0) and diag-
onal (DD0) lines defined in Fig. 5. The results of simulations with FBC and ABC-0 are shown. The left plot in
the figure shows that the use of FBC contributes to large density fluctuations in the near-wall region. However,
density fluctuations can be smoothed out if we use the ABC-0 type. On the right plot we see that we have even
1 We note that Re ¼ 0 here does not correspond to Stokes flow, which is the typical notation.
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larger density fluctuations in the corners due to the presence of two intersecting walls. For ABC-0 and ABC-I
we have a significant improvement of the number density in the corner. For EBC-0 and EBC-S types we find
that the density profile is essentially uniform.

The static fluid simulations reveal the effect of applying different boundary conditions. In the following, we
will identify one more effect when the fluid is in motion, namely compressibility. Therefore, it is important to
consider in DPD simulations of wall-bounded flows the boundary condition effect on density fluctuations sep-

arately, and note that certain implementations may eliminate this effect while for other implementations strong
boundary effects may be present.

We first performed DPD simulations in the regime of relatively small Reynolds numbers, i.e., 10 < Re < 50,
using different types of boundary conditions. In Fig. 7 we present simulation results for the flow at Re ¼ 25.
Results obtained by the spectral element method (SEM) are plotted with lines, and DPD results are shown
with symbols. We have a very good agreement between the DPD and the continuum-based simulations, which
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is typical in this range Re 6 50. The discrepancy in the corner for the DD0 cut can be explained by the lack of
DPD resolution there, where a very sharp velocity gradient is present. We also note that DPD can be used to
accurately simulate flows in the range of low Reynolds numbers, i.e., Re < 10. However, computationally it
can become very expensive to obtain a smooth solution because it requires a long-time averaging.

4.4. Moderate Reynolds number flow

Next we increase Reynolds number further but within the range 50 < Re < 400, and find that the DPD
results using FBC give a noticeable discrepancy compared to the spectral element results. In order to investi-
gate the reasons for the DPD failure in this case we consider the fluid density fluctuations in the corner where
the moving wall encounters the stationary vertical wall. Fig. 8 shows density profiles extracted along the DD0

line. This plot shows that at the corner x ¼ y ¼ 1 the maximum density increases with Re for the fixed com-
putational domain (L is fixed) or equivalently with the velocity of the moving wall. This is due to compress-
ibility effects allowing for a particle accumulation in the corner as the particles moving along the upper wall
encounter an obstacle represented by the stationary vertical wall. We also note that approximately up to
Re ¼ 50 the density profile around the corner region remains similar to that of a static fluid, even though
the maximum number density at the corner increases. For higher Reynolds numbers (Re > 50) the density pro-
file in the corner starts changing drastically, and the local dense region grows in size and leads to modification
of the global flow structure, and hence it affects the large vortex at the center of the cavity.

Next, we perform a series of DPD simulations using ABC-0 to model the wall boundaries. The new results
show that the density fluctuations at the corner x ¼ y ¼ 1 are substantially reduced, hence the agreement of
DPD results with the continuum-based solutions is valid in a wider range of Reynolds numbers, e.g.,
0 < Re < 100. Fig. 9 shows density profiles extracted along the DD0 line. As we also found in Poiseuille flow,
ABC-0 improves the near-wall density fluctuations, and therefore density fluctuations are less pronounced
compared to simulations employing FBC. Moreover, since we employ here the standard DPD method other
boundary condition models (e.g., ABC-I, EBC-0, or EBC-S) have similar performance to ABC-0.

4.5. Effect of domain size

In order to simulate higher Re number flows we can increase the size of the computational domain. To this
end, we performed several simulations for the cavity domain of size 20� 20� 500. These results indicate that
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we can reach an accurate solution for Reynolds number twice as big compared to the 10� 10 domain. A fur-
ther analysis of this will be given below. In Fig. 10 we present typical simulation results for Re ¼ 100 using
FBC to model the walls for the 10� 10 and 20� 20 domains. We have already demonstrated that the domain
10� 10 with FBC can be used to accurately simulate flows in the range 0 < Re < 50. However, for the domain
20� 20 with FBC we are able to use DPD for a somewhat wider range, i.e., 0 < Re < 100, at comparable
accuracy.



y

ve
lo

ci
ty

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

SEM
DPD, p=0.25
DPD, p=1.0

Re = 50, VV’ cut

v

v

x

y

y

ve
lo

ci
ty

0 0.2 0.4 0.6 0.8 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

SEM
DPD, p=0.25
DPD, p=1.0

Re = 50, DD’ cut

v

vy

x

Fig. 11. Velocity profiles extracted along the VV0 and DD0 lines for standard (p ¼ 1) and modified (p ¼ 0:25) DPD methods. The
coordinates are normalized by the domain size. (Re ¼ 50).

2552 D.A. Fedosov et al. / Journal of Computational Physics 227 (2008) 2540–2559
4.6. Modified DPD

Here we study the performance of the modified DPD (p ¼ 0:25 in Eq. (7)) [1] and compare it with the stan-
dard DPD (p ¼ 1 in Eq. (7)). The kinematic viscosity in this case increases to 0.5407. All other DPD simula-
tion parameters remain the same as before, and we only have to adjust the velocity of the moving wall in order
to match the targeted value of the Reynolds number. Fig. 11 compares our simulation results for the cavity
flow at Re ¼ 50 using EBC-S for different exponents p ¼ 1:0 (standard DPD) and p ¼ 0:25 (modified DPD).
We note that the results for p ¼ 0:25 are not very accurate compared to the results for p ¼ 1:0. This is due to
the increase of viscosity of a fluid which requires us to set a higher velocity for the moving wall in order to
achieve Re ¼ 50. The compressibility effects depend only on the repulsive interactions and not on the strength
of the thermostat, i.e. the exact form of the dissipative and random DPD forces. A conclusion which can be
drawn from these tests is that it is advantageous to use low viscosity in the DPD simulations instead of high
velocity to achieve a certain Re value. With regards to boundary conditions, we employed EBC-S type here
based on the aforementioned results for channel flow, i.e., EBC-S performs well both for the standard and
modified DPD version. In order to quantify the effect of different types of boundary conditions for the mod-
ified DPD method, we also run simulations using ABC-0. Fig. 12 shows corresponding results at Re ¼ 25. The
use of ABC-0 leads to larger errors in the solution as this type of boundary condition adjusts properly the
repulsive forces but not the dissipative forces. We also note that ABC-I performs similarly to EBC-S but
FBC and EBC-0 also lead to large errors, essentially confirming our initial conclusions based on the Poiseuille
flow study in Section 3.

4.7. Number density effect

Groot and Warren have shown that a sufficiently high number density (n > 2) is required in DPD simula-
tions in order to obtain a good approximation for the fluid obeying a quadratic equation of state [3]. They
have also derived a formula which relates the dimensionless compressibility k�1 of the fluid to the number den-
sity, conservative force coefficient, and temperature as follows
k�1 ¼ 1þ 2aan
kBT

ða ¼ 0:101Þ: ð12Þ
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In principle, the number density chosen for the simulation is a free parameter, however, often the value n ¼ 3
is used as a lowest possible density due to increasing computational cost for larger densities. Further, we inves-
tigate the issue of compressibility and boundary condition effects for the cavity flow utilizing different fluid
number densities. We have performed a series of simulations for the cavity flow in the regime 0 < Re < 200
using bulk number densities n ¼ 3, 6 and 9 for the small domain size 10� 10, and also bulk number densities
n ¼ 3 and 6 for the larger domain size 20� 20. In all simulations we fix the dimensionless compressibility and
temperature and adjust the conservative force coefficient to the bulk number density using Eq. (12). Specifi-
cally, we run simulations for three sets of those parameters: (1) n ¼ 3; a ¼ 25; (2) n ¼ 6; a ¼ 12:5; (3)
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n ¼ 9; a ¼ 8:33. We note that we maintain the same fluid dimensionless compressibility in order to be able to
definitively separate the compressibility effects from the boundary condition effects.

The results presented so far suggest that the limit of DPD applicability can be determined by the maximum
allowed velocity of the moving wall or alternatively by the maximum allowed number density in the corner.
However, it appears that this limit can be well characterized by the density ratio nmax=n where nmax is the max-
imum density in the corner (averaged over the corner bin) and n is the bulk density. Fig. 13 shows the depen-
dence of the density ratio on the Reynolds number for simulations in the small and large domains; each
symbol in the plot corresponds to a separate cavity flow simulation.

An important finding is that the number density ratio varies approximately linearly with Re. Furthermore,
the lines which correspond to different number densities are parallel, hence the density ratio has the same func-
tional dependence for all bulk number densities, i.e. these lines have equal slopes. This, in turn, implies that the
response of number density ratio to a change in Re (or equivalently to the velocity of the moving wall) is iden-
tical and independent of the bulk number density. This fact supports the idea that the limit of DPD applica-
bility can be determined by a criterion which is independent of the specific value of the bulk number density
used. The Re ¼ 0 case corresponds to zero velocity of the upper wall, hence this is an equilibrium state. The
deviation of the DPD solution from the expected accurate solution (nmax=n ¼ 1) for Re ¼ 0 is due solely to the
boundary condition implementation. In particular, the boundary conditions employed for the simulation
results shown in Fig. 13 are of the FBC type. We see that as the bulk number density increases the effect
of the boundary condition is less pronounced. Simulations with the other types of boundary conditions
(i.e., ABC or EBC) give the expected solution at Re ¼ 0, i.e., they intersect the vertical axis at nmax=n � 1.
At this point, we can separate the effects of boundary conditions from the compressibility effects, given the
aforementioned parallel form of the number density lines. In particular, the contribution of the boundary con-
ditions can be extracted from the Re ¼ 0 case while the linear increase with Re in the maximum number den-
sity is entirely due to compressibility effects.

Our simulation results show that the limit of DPD applicability can be determined by the maximum
allowed number density ratio, which is independent of the bulk number density but depends on the geometry
and to some degree on the size of the bin selected for statistical averaging. For example for the cavity size
10� 10 with 40� 40 bins, we found that the maximum allowed number density ratio for the standard
DPD method is approximately nmax=n ¼ 6, see horizontal solid line in the figure. (This value is obtained by
systematic comparison of the velocity field from the DPD simulations with the reference spectral element solu-
tions based on the incompressible Navier–Stokes equations.) The intersection of the horizontal line (defined by
nmax=n ¼ 6) with the inclined lines determines the maximum Re that can be accurately simulated. This is dem-
onstrated in Figs. 14 and 15, where we plot velocity profiles extracted along a vertical (VV0) and diagonal
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(DD0) cuts for Re ¼ 50 and Re ¼ 100, respectively, employing different number densities in simulations.
Although the results for the case Re ¼ 50, n ¼ 6 are in a good agreement with the spectral element solution,
the case Re ¼ 50, n ¼ 3 shows a noticeable discrepancy in the results. We find a similar behavior in the case of
Re ¼ 100 for densities 6 and 9. Clearly, for selected domain size, Re ¼ 50 and 100 are close to the maximum
Reynolds number values that can be simulated at number density n ¼ 6 and n ¼ 9, respectively. We observe
that higher number density allows one to simulate higher Re number flows with the FBC model. This is due to
the fact that the boundary condition effects on the near-wall density fluctuations is weaker for higher number
density flows.

In Fig. 13 we have included results from simulations in a larger cavity domain, and we observe that the
slope of the lines corresponding to the 20� 20 cavity is half that of the lines corresponding to 10� 10 cavity.
This is due to the fact that for the same Re the velocity of the horizontal wall is halved in the larger domain,
and we have already seen the strong dependence of the accuracy of the DPD simulation on the wall’s velocity
magnitude. However, in order to determine the true limit in Re in the larger domain simulations, we have to
consider the bin size employed in the statistical averaging. If we keep the same bin size as in 10� 10 cavity we
would have 80� 80 bins and the DPD limit of nmax=n ¼ 6 is valid, independent of the bulk number density
used. However, if we employ a 40� 40 grid of bins then the size of the bin is twice larger than the bin size
for the small domain, and, hence, the density fluctuations are reduced due to the wider area averaging. Using
similar comparisons between the spectral element solutions and the DPD results processed on the large
domain but with the 40� 40 bin, we find that the limit of DPD applicability seems to be even higher, e.g.,
nmax=n � 8. So in brief, these results show that two different criteria employed in the comparison of DPD with
the spectral element results may lead to somewhat different values of the threshold ratio nmax=n.

We can now use the findings we just discussed in order to collapse all the results plotted in Fig. 13 into a
single ‘‘master” curve. In particular, if we repeat the previous simulations with the more accurate boundary
conditions (ABC or EBC) there will be no dependence on the nominal value of the bulk density so all parallel
curves collapse to a single curve passing through nmax=n ¼ 1 in the vertical axis (at Re ¼ 0). Moreover, the
slope of the curves depends on the wall’s driving velocity, hence if we replace Re in the horizontal axis with
the velocity of the wall U we should expect different domain sizes to also collapse onto one curve. This is,
indeed, the case and the ‘‘universal” curve is shown in Fig. 16. In order to obtain the maximum value of veloc-
ity for which we obtain correct flow fields we propose, based on our results, an upper limit of nmax=n in the
range [5, 10] for all cases. To test this criterion we performed parallel simulations (on 512 Blue Gene proces-
sors) at a much higher Re ¼ 1000 on a 100� 100� 10 domain using EBC-S boundary conditions. Here, we
keep all simulation parameters the same and set the velocity of the moving wall to 2:854 in order to match
Re ¼ 1000. (The case with velocity v ¼ 2:854 corresponds approximately to the density ratio 5 in Fig. 16,
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and, therefore, the DPD simulation results are expected to be accurate.) In Fig. 17 we present simulation
results at Re ¼ 1000 including spectral element simulations of incompressible and compressible (at nominal
Mach number 0.3) flows. To prove that DPD accurately captures the flow field structure in this relatively high
Reynolds number case we present comparisons of the velocity field in terms of vx and vy contour plots in
Fig. 18. In general, we observe a very good agreement of the DPD results with the spectral element solutions.
In particular, the DPD contours seem to lie between the contours of the incompressible and compressible
solutions.

We have also performed a similar simulation using the modified DPD, see Fig. 19. The velocity of the mov-
ing wall in this case is set to 5.407, which corresponds to approximately 9.5 value of the density ratio on the
master curve. Here we see a more pronounced difference with the incompressible spectral element results, as
expected in this case, due to the fact that compressibility effects become more important. We find that the
modified DPD contours are closer to the compressible Mach ¼ 0:3 solution, however there is a large discrep-
ancy of the results in the corner. The Re ¼ 1000 simulations verify that if the upper limit of nmax=n is in the
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range [5, 10] the DPD results will be accurate. This limit can be used in selecting an appropriate domain size
for the desired Re number flow simulation.

5. Summary

In this paper we have studied the two fundamental issues that limit the maximum Reynolds number that
can be achieved in DPD simulations of wall-bounded flows, namely, boundary conditions and compressibility

effects. In order to enforce accurately wall boundary conditions in DPD, we have to properly model the
interaction forces between the wall and the fluid particles. Specifically, the wall-normal component of the
conservative force controls the density fluctuations while the wall-tangential component of the dissipative force



2558 D.A. Fedosov et al. / Journal of Computational Physics 227 (2008) 2540–2559
enforces the correct velocity slope in the near-wall region. (The average random force is zero and does not play
an important role in the correct imposition of boundary conditions.) The models ABC-I and EBC-S that we
studied make the proper force adjustments for both components whereas FBC, ABC-0 and EBC-0 modify
only the wall-normal conservative force component. The DPD simulations we presented here for Poiseuille
flow as well as flow in a lid-driven cavity demonstrate that indeed ABC-I and EBC-S yield superior results.
Density fluctuations around the bulk density in the case of the lid-driven cavity may achieve very large values
at the corners formed between two intersecting walls. We have developed a simple criterion to diagnose erro-
neous DPD results based on the ratio of the maximum density in the domain over the bulk density; the upper
limit of this ratio should be in the range [5, 10]. To achieve accurate DPD results at higher Reynold number,
we propose to increase the size of the computational domain. Our criterion can be used to predict the mini-
mum domain size to achieve a specific Reynolds number. We have demonstrated this by simulating accurately
flow in the cavity at Re ¼ 1000 using both the standard as well as a modified version of DPD, the latter asso-
ciated with highly viscous fluids.

Increasing the domain size requires more DPD particles, so here we provide an approximate analysis of the
associated computational cost. Specifically, the cost of DPD simulation per time-step is proportional to the
number of particle pairs, since only pairwise interactions are involved in the computation. Hence, the cost
of the simulation with the simplest implementation would be proportional to N 2, where N is the number of
particles in the simulation. However, the forces in DPD act locally within the cutoff radius rc, and, hence,
a more effective implementation is to consider only neighboring pairs (Nn of them). Correspondingly, the cost
per time-step is cost � CN � N n, where the constant C represents the number of operations required for each
pair. We have verified this scaling in equilibrium simulations (periodic box domain) using different number of
particles N, with results revealing that cost � N 1:1 if more than 104 particles are used. If we now increase the
cavity domain size in x and y dimensions by k times the corresponding number of particles is k2N while the
number of bins is k2Nb. The computational cost per time step is cost � Ck2N � Nn, so the simulation is k2

times more expensive. However, we also need to account for an increase in the total number of time-steps
required for the larger domains, namely: (i) the time ts required to reach a statistically steady state; (ii) the time
ta required to perform the data averaging after the steady state is reached. To this end, we can estimate ts from
the diffusion limit, i.e., ts / L=

ffiffiffi
m
p

, while ta � N steps
Nb

N where N steps is the number of steps required to reach the
desired accuracy, and N b is the number of bins used for statistical processing. Hence, to reach steady state in
the larger domain requires an extra cost by a factor of k3 but the statistical averaging cost is constant for com-
parable accuracy with the small domain.

Finally, we comment on the generality of our criterion and specifically how does it extend to other wall-
bounded flows. To this end, we can examine if our criterion is valid for the triangular-cavity flow presented
in the introduction, for which we have performed similar DPD simulations with different boundary condition
models and at different Reynold number. The DPD results, using FBC, are in a good agreement with spectral
element results for Re < 30. We encountered similar problems to the square-cavity case, i.e., density fluctua-
tions in the near-wall region due to boundary conditions and compressibility effects. Analysis of DPD results
at different number densities showed that the density ratio, which identifies DPD applicability is equal to 5 in
this case. This limit is in the lower end of the interval [5, 10] which we proposed because the triangular-cavity
has a sharper angle between moving and stationary wall boundaries, and this favors compressibility effects.
The use of the more accurate boundary conditions widens the range of DPD applicability, similarly to the
square-cavity flow. As it was noted before, we can simulate higher Re number flows by simply making the
computational domain larger at approximately linear cost. With regards to external flows (e.g., flows past bluff
bodies), our experience is that the problems we discussed in this paper are less pronounced for such flows,
because convex type of geometries appear not to favor particle accumulation close to the boundary. However,
there are also outstanding issues associated with DPD simulation of such flows, most notably the accurate
imposition of inflow/outflow boundary conditions, a topic for future studies.
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